

Why Grand Canyon?

- One of the most spectacular geological displays in the world.
- Discussions about "How Long?" are common and important.
- Illustrates many geological principles that concern us.
- We have a lot to say about it.

GEOLOGIC COLUMN

ERA

SYSTEM

SERIES

OR PERIOD

OR EPOCH

CENOZOIC QUATERNARY

HOLOCENE

PLEISTOCENE

NEOGENE

PLIOCENE

TERTIARY

MIOCENE OLIGOCENE

PALEOGENE

EOCENE

PALEOCENE

MESOZOIC

CRETACEOUS U, L JURASSIC U, M

TRIASSIC

U, M, L U, M, L

PERMIAN

U, L

CARBONIFEROUS U, L

PALEOZOIC

DEVONIAN

U, L

SILURIAN

U, M, L

ORDOVICIAN

U, M, L

CAMBRIAN

U, M, L

PRECAMBRIAN

U, M, L

The Issue of Time

- Cutting the Canyon
 - -15, 000 to 15,000,000 years
 - -Few hours
- Depositing the Sediments
 - -250,000,000 years
 - -How certain are we?

Standard Model

- Shallow advancing sea
- Shallow water sedimentary structures
- Multiple advances and retreats of the sea over millions of years
- Based in large part on comparisons with modern environments

Does Standard Model Work?

Geometry of surfaces

NINETYONE MILE CANYON

Conclusions based upon preservation of the basal breccia

- Preservation of basal breccia along cliff argues strongly that region was never subjected to erosion (I.e. shallow water) from time of breccia deposition till finally cliff covered.
- Water level deep enough so cliff was below storm wave base at all times.

Preservation of cliff face

Conclusions based upon preservation of cliff face

- Preservation of vertical cliff face argues strongly that region was never subjected to erosion (I.e. shallow water) from time of breccia deposition until finally cliff covered.
- Water level deep enough so cliff was below storm wave base (60 m) at all times.

Incorporation of underlying sediment into Tapeats

Conclusions based upon absence of significant component of underlying sediment in the Tapeats

- Absence of red shale in the Tapeats sediment argues strongly that the underlying surface was never subjected to a high-energy environment (i.e. shallow water) from time of breccia deposition till finally red surface was covered by Cambrian sedimentation.
- Water level deep enough so underlying red shale was below storm wave base at all times.

Comparison of the models: Shallow marine deposition in transgressing sea

Comparison of the models: Deep marine deposition, collapsing shelf

Conclusions:

- Tapeats was not deposited in a shallow setting.
- Deposition was in deep water, and was rapid. This is consistent with deposition in a global flood.
- Sedimentary structures used to define Tapeats as shallow marine must also be consistent with deep water deposition.

